jueves, 7 de enero de 2010

UNIDAD III
Medidas de tendencia central y variabilidad
3.1 Medidas de tendencia central:
Reciben este nombre debido a que al observar la distribución de los datos, estas tienden a estar localizadas generalmente en su parte central.

* Media: También se le conoce como promedio ya que es el promedio de las lecturas o mediciones individuales que se tienen en la muestra. Ejemplo:

Se ha tomado como muestra las medidas de seis cables usados en un arnés para lavadora, las cuales son; 15.2cm, 15.0, 15.1, 15.2, 15.1 y 15.0, determine su media aritmética:

15.2+15.0+15.1+15.2+15.1+15.0
X= ____________________________ = 15.1
6

*Mediana: La mediana es aquel valor que se encuentra en la parte central de los datos que se tienen en la muestra una vez que estos han sido ordenados según su valor o magnitud. Pracalcular la mediana se pueden presentar dos casos:

a) Que el numero de datos sea impar. Ejemplo:
Los siguientes datos son las mediciones obtenidas de un circuito utilizado en un arnés de lavadora; se toma como muestra siete circuitos y sus mediciones son: 11.3, 11.2, 11.5, 11.2, 11.2, 11.47, 11.5. Ordenandolos quedarían:

11.2, 11.2, 11.2, 11.3, 11.4, 11.5, 11.5 Se observa que el dato 11.3 queda en medio por lo que este es el valor de la mediana.

b) Que el número de datos sea par. Ejemplo:
Los siguientes datos son las mediciones obtenidas de un circuito utilizado en un arnés de lavadora; se toma como muestra ocho circuitos y sus mediciones son: 11.3, 11.2, 11.5, 11.2, 11.2, 11.4, 11.5, 11.4 Ordenándolos quedarían:

11.5, 11.4, 11.4, 11.3, 11.2, 11.2, 11.2, 11.1 cm Como son dos datos los que quedan en medio , se obtiene el promedio:
11.3+11.2
X med: ---------------- = 11.25cm
2

*Moda: Aquel valor o valores que más se repiten o que tienen mayor frecuencia entre los datos de la muestra.

3.1.1Datos no agrupados:
Cuando la muestra que se ha tomado de la población o proceso que se desea analizar, es decir, tenemos menos de 20 elementos en la muestra, entonces estos datos son analizados sin necesidad de formar clases con ellos y a esto es a lo que se le llama tratamiento de datos no agrupados.

3.1.2 Datos agrupados:
Cuando una muestra consta de 30 o más datos, lo aconsejable es agrupar los datos en clases y a partir de estas determinar las características de la muestra y por consiguiente las de la población de donde fue tomada.

3.2 Medidas de variabilidad:

*Rango: También llamado recorrido: Es la diferencia entre el valor mayor y el valor menos encontrados en la muestra, también se le denomina recorrido ya que nos dice entre que valores hace su recorrido la variable de interés; y se determina de la siguiente manera:

R=VM-Vm

R= rango o recorrido
VM = valor mayor en la muestra
Vm = valor menos en la muestra Ejemplo:

Se ha tomado como muestras las mediciones de la resistencia a la tensión de la soldadura usada para unir dos cables, estas son: 78.5kg, 82.4,87.3, 78.0, 90.0, 86.5, 77.9, 92.4, 75.9.
VM = 92.4 kg
Vm =75.9 kg
R= 16.5 kg

* Varianza: Es el promedio de las diferencias elevadas al cuadrado entre cada valor que se tiene en la muestra y la media aritmética de los datos. Ejemplo:

Lo primero que hay que calcular es la media aritmética de la muestra como ya se ha hecho anteriormente.

X= 14.2+12.1+15.6+18.1+14.3 / 5 = 14.86
S2= (14.2-14.86)2 + (12.1-14.86)2+…+ (14.3-14.86)2 / 5-1 =
S2= 0.4356+7.6176+0.5476+10.4976+0.3136 / 4= 4.853mg2

*Desviación estándar: Es l desviación o diferencia promedio que existe entre cada dato de la muestra y la media aritmética de la muestra. Y se obtiene a partir de la varianza, sacándola raíz cuadrada
Ejemplo:

S= raíz 4.853mg2 = 2.2029mg

La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Ejemplo: tiramos un dado al aire y queremos saber cual es la probabilidad de que salga un 2, o que salga un número par, o que salga un número menor que 4.
El experimento tiene que ser aleatorio, es decir, que pueden presentarse diversos resultados, dentro de un conjunto posible de soluciones, y esto aún realizando el experimento en las mismas condiciones. Por lo tanto, a priori no se conoce cual de los resultados se va a presentar:
Ejemplos: lanzamos una moneda al aire: el resultado puede ser cara o cruz, pero no sabemos de antemano cual de ellos va a salir.
En la Lotería de Navidad, el "Gordo" (en España se llama "Gordo" al primer premio) puede ser cualquier número entre el 1 y el 100.000, pero no sabemos a priori cual va a ser (si lo supiéramos no estaríamos aquí escribiendo esta lección).
Hay experimentos que no son aleatorios y por lo tanto no se les puede aplicar las reglas de la probabilidad.
Ejemplo: en lugar de tirar la moneda al aire, directamente selccionamos la cara. Aquí no podemos hablar de probabilidades, sino que ha sido un resultado determinado por uno mismo.
Antes de calcular las probabilidades de un experimento aleaotorio hay que definir una serie de conceptos:
Suceso elemental: hace referencia a cada una de las posibles soluciones que se pueden presentar.
Ejemplo: al lanzar una moneda al aire, los sucesos elementales son la cara y la cruz. Al lanzar un dado, los sucesos elementales son el 1, el 2, .., hasta el 6.
Suceso compuesto: es un subconjunto de sucesos elementales.
Ejemplo: lanzamos un dado y queremos que salga un número par. El suceso "numero par" es un suceso compuesto, integrado por 3 sucesos elementales: el 2, el 4 y el 6
O, por ejemplo, jugamos a la ruleta y queremos que salga "menor o igual que 18". Este es un suceso compuesto formado por 18 sucesos elementales (todos los números que van del 1 al 18).
Al conjunto de todos los posibles sucesos elementales lo denominamos espacio muestral. Cada experimento aleatorio tiene definido su espacio muestral (es decir, un conjunto con todas las soluciones posibles).
Ejemplo: si tiramos una moneda al aíre una sola vez, el espacio muestral será cara o cruz.
Si el experimento consiste en lanzar una moneda al aire dos veces, entonces el espacio muestral estaría formado por (cara-cara), (cara-cruz), (cruz-cara) y (cruz-cruz).
Probabilidad: Relación entre sucesos
15°
Entre los sucesos compuestos se pueden establecer distintas relaciones:
a) Un suceso puede estar contenido en otro: las posibles soluciones del primer suceso también lo son del segundo, pero este segundo suceso tiene además otras soluciones suyas propias.
Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Vemos que el suceso a) está contenido en el suceso b).
Siempre que se da el suceso a) se da el suceso b), pero no al contrario. Por ejemplo, si el resultado fuera el 2, se cumpliría el suceso b), pero no el el a).
b) Dos sucesos pueden ser iguales: esto ocurre cuando siempre que se cumple uno de ellos se cumple obligatoriamente el otro y viceversa.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Vemos que las soluciones coinciden en ambos casos.
c) Unión de dos o más sucesos: la unión será otro suceso formado por todos los elementos de los sucesos que se unen.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par y b) que el resultado sea mayor que 3. El suceso unión estaría formado por los siguientes resultados: el 2, el 4, el 5 y el 6
d) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de dos o más sucesos que se intersectan.
Ejemplo: lanzamos un dado al aire, y analizamos dos sucesos: a) que salga número par, y b) que sea mayor que 4. La intersección de estos dos sucesos tiene un sólo elemento, el número 6 (es el único resultado común a ambos sucesos: es mayor que 4 y es número par).
e) Sucesos incompatibles: son aquellos que no se pueden dar al mismo tiempo ya que no tienen elementos comunes (su interesección es el conjunto vacio).
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número menor que 3, y b) que salga el número 6. Es evidente que ambos no se pueden dar al mismo tiempo.
f) Sucesos complementarios: son aquellos que si no se da uno, obligatoriamente se tiene que dar el otro.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga un número par, y b) que salga un número impar. Vemos que si no se da el primero se tiene que dar el segundo (y viceversa).
LECCION 16ª
Cálculo de probabilidades
Probabilidad
Como hemos comentado anteriormente, la probabilidad mide la mayor o menor posibilidad de que se dé un determinado resultado (suceso) cuando se realiza un experimento aleatorio.
La probabilidad toma valores entre 0 y 1 (o expresados en tanto por ciento, entre 0% y 100%):
El valor cero corresponde al suceso imposible: lanzamos un dado al aire y la probabilidad de que salga el número 7 es cero (al menos, si es un dado certificado por la OMD, "Organización Mundial de Dados").
El valor uno corresponde al suceso seguro: lanzamos un dado al aire y la probabilidad de que salga cualquier número del 1 al 6 es igual a uno (100%).
El resto de sucesos tendrá probabilidades entre cero y uno: que será tanto mayor cuanto más probable sea que dicho suceso tenga lugar.
¿Cómo se mide la probabilidad?
Uno de los métodos más utilizados es aplicando la Regla de Laplace: define la probabilidad de un suceso como el cociente entre casos favorables y casos posibles.
P(A) = Casos favorables / casos posibles
Veamos algunos ejemplos:
a) Probabilidad de que al lanzar un dado salga el número 2: el caso favorable es tan sólo uno (que salga el dos), mientras que los casos posibles son seis (puede salir cualquier número del uno al seis). Por lo tanto:
P(A) = 1 / 6 = 0,166 (o lo que es lo mismo, 16,6%)
b) Probabilidad de que al lanzar un dado salga un número par: en este caso los casos favorables son tres (que salga el dos, el cuatro o el seis), mientras que los casos posibles siguen siendo seis. Por lo tanto:
P(A) = 3 / 6 = 0,50 (o lo que es lo mismo, 50%)
c) Probabilidad de que al lanzar un dado salga un número menor que 5: en este caso tenemos cuatro casos favorables (que salga el uno, el dos, el tres o el cuatro), frente a los seis casos posibles. Por lo tanto:
P(A) = 4 / 6 = 0,666 (o lo que es lo mismo, 66,6%)
d) Probabilidad de que nos toque el "Gordo" de Navidad: tan sólo un caso favorable, el número que jugamos (¡qué triste...¡), frente a 100.000 casos posibles. Por lo tanto:
P(A) = 1 / 100.000 = 0,00001 (o lo que es lo mismo, 0,001%)
Merece la pena ...... Por cierto, tiene la misma probabilidad el número 45.264, que el número 00001, pero ¿cuál de los dos comprarías?
Para poder aplicar la Regla de Laplace el experimento aleatorio tiene que cumplir dos requisitos:
a) El número de resultados posibles (sucesos) tiene que ser finito. Si hubiera infinitos resultados, al aplicar la regla "casos favorables / casos posibles" el cociente siempre sería cero.
b) Todos los sucesos tienen que tener la misma probabilidad. Si al lanzar un dado, algunas caras tuvieran mayor probabilidad de salir que otras, no podríamos aplicar esta regla.
A la regla de Laplace también se le denomina "probabilidad a priori", ya que para aplicarla hay que conocer antes de realizar el experimento cuales son los posibles resultados y saber que todos tienen las mismas probabilidades.
¿Y si el experimento aleatorio no cumple los dos requisitos indicados, qué hacemos?, ¿ponemos una denuncia?
No, no va a ser necesario denunciar a nadie, ya que en este caso podemos acudir a otro modelo de cálculo de probabilidades que se basa en la experiencia (modelo frecuentista):
Cuando se realiza un experimento aleatorio un número muy elevado de veces, las probabilidades de los diversos posibles sucesos empiezan a converger hacia valores determinados, que son sus respectivas probabilidades.
Ejemplo: si lanzo una vez una moneda al aire y sale "cara", quiere decir que el suceso "cara" ha aparecido el 100% de las veces y el suceso "cruz" el 0%.
Si lanzo diez veces la moneda al aire, es posible que el suceso "cara" salga 7 veces y el suceso "cruz" las 3 restantes. En este caso, la probabilidad del suceso "cara" ya no sería del 100%, sino que se habría reducido al 70%.
Si repito este experimento un número elevado de veces, lo normal es que las probabilidades de los sucesos "cara" y "cruz" se vayan aproximando al 50% cada una. Este 50% será la probabilidad de estos sucesos según el modelo frecuentista.
En este modelo ya no será necesario que el número de soluciones sea finito, ni que todos los sucesos tengan la misma probabilidad.
Ejemplo: si la moneda que utilizamos en el ejemplo anterior fuera defectuosa (o estuviera trucada), es posible que al repetir dicho experimento un número elevado de veces, la "cara" saliera con una frecuencia, por ejemplo, del 65% y la "cruz" del
35%. Estos valores serían las probabilidades de estos dos sucesos según el modelo frecuentista.
A esta definición de la probabilidad se le denominaprobabilidad a posteriori, ya que tan sólo repitiendo un experimento un número elevado de veces podremos saber cual es la probabilidad de cada suceso.
LECCION 17ª
Probabilidad de sucesos
Probabilidad de sucesos
Al definir los sucesos hablamos de las diferentes relaciones que pueden guardar dos sucesos entre sí, así como de las posibles relaciones que se pueden establecer entre los mismos. Vamos a ver ahora cómo se refleja esto en el cálculo de probabilidades.
a) Un suceso puede estar contenido en otro: entonces, la probabilidad del primer suceso será menor que la del suceso que lo contiene.
Ejemplo: lanzamos un dado y analizamos dos sucesos: a) que salga el número 6, y b) que salga un número par. Dijimos que el suceso a) está contenido en el suceso b).
P(A) = 1/6 = 0,166
P(B) = 3 / 6 = 0,50
Por lo tanto, podemos ver que la probabilidad del suceso contenido, suceso a), es menor que la probabilidad del suceso que lo contiene, suceso b).
b) Dos sucesos pueden ser iguales: en este caso, las probabilidades de ambos sucesos son las mismas.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que salga múltiplo de 2. Las soluciones coinciden en ambos casos.
P(A) = 3 / 6 = 0,50
P(B) = 3 / 6 = 0,50
c) Intersección de sucesos: es aquel suceso compuesto por los elementos comunes de los dos o más sucesos que se intersectan. La probabilidad será igual a la probabilidad de los elemntos comunes.
Ejemplo: lanzamos un dado al aire y analizamos dos sucesos: a) que salga número par, y b) que sea mayor que 3. La intersección de estos dos sucesos tiene dos elementos: el 4 y el 6.
Su probabilidad será por tanto:

Seguidores